554

35 Edible Coatings and Films from Agricultural and Marine Food Wastes

pomaces extracted from blueberry and red grape skin. Food Packaging and Shelf

Life 20 (March) https://doi.org/10.1016/j.fpsl.2019.100315.

13 FAO (2018). Food loss and waste and the right to adequate food: making the

connection. Right to Food Discussion Paper.

14 Aydemir, L.Y., Gökbulut, A.A., Baran, Y., and Yemenicioˇglu, A. (2014). Bioactive,

functional and edible film-forming properties of isolated hazelnut (Corylus avel-

lana L.) meal proteins. Food Hydrocolloids 36: 130–142. https://doi.org/10.1016/j

.foodhyd.2013.09.014.

15 Fasciglione, G., Goñi, M.G., Yommi, A.K. et al. (2020). Revaluation of waste

from fishing industry through generation of chitosan coatings to improve qual-

ity and extend shelf-life of minimally processed lettuce. Postharvest Biology and

Technology 170 (April) https://doi.org/10.1016/j.postharvbio.2020.111310.

16 de Moraes Crizel, T., Haas Costa, T.M., de Oliveira Rios, A., and

Hickmann Flôres, S. (2016). Valorization of food-grade industrial waste in the

obtaining active biodegradable films for packaging. Industrial Crops and Products

87: 218–228. https://doi.org/10.1016/j.indcrop.2016.04.039.

17 Sharmila, G., Muthukumaran, C., Kumar, N.M. et al. (2020). Food waste val-

orization for biopolymer production. In: Current Developments in Biotechnology

and Bioengineering. Elsevier https://doi.org/10.1016/b978-0-444-64321-6.00012-4.

18 Sothornvit, R. and Pitak, N. (2007). Oxygen permeability and mechanical proper-

ties of banana films. Food Research International 40 (3): 365–370. https://doi.org/

10.1016/j.foodres.2006.10.010.

19 Borah, P.P., Das, P., and Badwaik, L.S. (2017). Ultrasound treated potato peel and

sweet lime pomace based biopolymer film development. Ultrasonics Sonochem-

istry 36: 11–19. https://doi.org/10.1016/j.ultsonch.2016.11.010.

20 Briones, R., Torres, L., Saravia, Y. et al. (2015). Liquefied agricultural residues

for film elaboration. Industrial Crops and Products 78: 19–28. https://doi.org/10

.1016/j.indcrop.2015.10.021.

21 Guo, X., Lu, Y., Cui, H. et al. (2012). Factors affecting the physical properties of

edible composite film prepared from zein and wheat gluten. Molecules 17 (4):

3794–3804. https://doi.org/10.3390/molecules17043794.

22 Lee, H.B., Noh, B.S., and Min, S.C. (2012). Listeria monocytogenes inhibition

by defatted mustard meal-based edible films. International Journal of Food

Microbiology 153 (1–2): 99–105. https://doi.org/10.1016/j.ijfoodmicro.2011.10.022.

23 Arquelau, P.B.d.F., Silva, V.D.M., Garcia, M.A.V.T. et al. (2019). Characterization

of edible coatings based on ripe “Prata” banana peel flour. Food Hydrocolloids

89: 570–578. https://doi.org/10.1016/j.foodhyd.2018.11.029.

24 Ma, W., Rokayya, S., Xu, L. et al. (2018). Physical-chemical properties of edible

film made from soybean residue and citric acid. Journal of Chemistry 2018

https://doi.org/10.1155/2018/4026831.

25 Das Purkayastha, M., Manhar, A.K., Das, V.K. et al. (2014). Antioxidative, hemo-

compatible, fluorescent carbon nanodots from an “end-of-pipe” agricultural

waste: exploring its new horizon in the food-packaging domain. Journal of

Agricultural and Food Chemistry 62 (20): 4509–4520. https://doi.org/10.1021/

jf500138f.